The Compiler Forest

omitted for submission

Abstract

Compilers targeting complex execution environments, such as
computer clusters composed of machines with multi-core CPUs
and GPUs, are difficult to write. To address this problem, we intro-
duce partial compilers, which can pass subtasks to child compilers
and combine the various plans they create, as a generalization of
traditional compilers. We define a set of high-level polymorphic
operations that manipulate partial compilers as first-class values.
These mechanisms provide a software architecture for modular
compiler construction, which allows the building of a forest of
compilers. We explore the mathematical structure of partial com-
pilers and its ties to theorem proving and category theory. Moti-
vated by the problem of distributed computation, we demonstrate
the software engineering advantages of our approach by building
some complex compilers. We describe the complete implementa-
tion of a large-scale query-processing system written as a modular
combination of many simple partial compilers.

1 Introduction

Today’s computers are routinely composed of multiple compu-
tational units: multi-core processors, hyperthreaded processors,
graphics processors, and multi-processors; we will use the term
“execution engine” for these computational resources. Writing
software that effectively exploits a complex hierarchy of execu-
tion engines is a daunting task.

The work presented in this paper was motivated by the Dryad-
LINQ compiler [33] and its underlying distributed runtime system
Dryad [16]. DryadLINQ translates programs written in the LINQ
programming language (Language INtegrated Query) [20] into
large-scale distributed computations that run on shared-nothing
computer clusters, using multiple cores for each machine.

The basic functionality provided by DryadLINQ is to compile
programs for execution on a computer cluster. A cluster can be seen
as a big execution engine composed of many computers that do
the actual work. At a finer grain each computer may have multiple
CPU cores. Logically, the core DryadLINQ compilation process is
correspondingly structured as a three-stage process: (1) translating
a cluster-level computation into a set of interacting machine-level
computations, (2) translating each machine-level computation into
a set of CPU core-level computations, and (3) implementing each
core-level computation in terms of machine code (via .Net). In the
case of DryadLINQ, the source language for all these layers is es-
sentially the same, viz LINQ, but the optimization strategies, pro-

[Copyright notice will appear here once ’preprint’ option is removed.]

gram transformation rules, and runtime operations invoked by the
compiler at the cluster, machine, and core levels are very different.
However, the DryadLINQ compiler has a monolithic implementa-
tion, including several other modules besides the three mentioned
above. Maintaining and updating the DryadLINQ codebase is quite
onerous; its monolithic nature makes it brittle to changes and hard
to understand. Our goal is to refactor the compiler into a hierarchy
of completely independent compilers that cooperate to implement
a single translation.

Our main contribution is a novel software architecture con-
structed using a standard type-theoretical interface for building co-
operating compilers. We present in Section 2 the notion of a partial
compiler; this is a compiler that needs “help” from other compilers
to produce a complete result. The resulting composite compilers
form our compiler forests. Formally, one uses polymorphic compo-
sition operations on compilers and partial compilers.

Mathematically, partial compilers and their composition, as well
as our other polymorphic operations, can be placed on a solid foun-
dation using tools from category theory, particularly categorical
logic, described in Section 6. The categorical formalism suggests
a set of powerful polymorphic operators that can be used to manip-
ulate partial compilers as first-class objects, particularly the com-
position and tensor operations given in Section 2, as well as oth-
ers, given in Section 3. These operations can be seen as a form of
“structured programming” manipulating compilers as values.

Based on this small set of well-defined operations, we obtain
a theory of correctness of composite compilers. This is described
in Section 4; it is a Hoare-type logic for reasoning about partially-
correct partial compilers and their compositions.

The theoretical foundations we establish have immediate appli-
cations in practice. We have used our approach successfully for
writing compilers that target complex execution engines (such as
computer clusters). A compiler built as a tree of partial compilers
has a modular architecture (to some degree induced by the struc-
ture of the execution engine) and is easily tested and extended.
To demonstrate this, we revisit the original problem of compil-
ing LINQ for computer clusters in Section 5. In order to expose
the fundamental ideas without undue detail, we consider only a re-
duced and stylized version of LINQ called pLINQ. This language
is rich enough to express many interesting computations, includ-
ing the popular MapReduce [8] computation model. In the text we
build a fully functional compiler for xLINQ that executes programs
on a computer cluster with multi-core machines. We use our formal
machinery to argue about the correctness of the uLLINQ compiler.

We have validated this architecture by two preliminary compiler
implementations: a (simplified) implementation of DryadLINQ,
and a large-scale matrix computations compiler, both described
briefly in Section 5.4 (a detailed description is reserved for a sepa-
rate publication). We conjecture that partial compilers will prove to
be a useful concept even for structuring traditional compilers, since
the formalism of partial compilers does not depend on the existence
of a complex composite execution engine.

2011/11/6

query Tplan
8
1 © .
0 E Partlgl
query Tplan e 3! g compiler
u',I
LI
) sub-query sub-plan
Compiler
Child
Compiler

Figure 1. Left: A compiler translates queries to plans. Right: A
partial compiler is unable to completely compile the input querys; it
reduces the query to a sub-query to be handled by a child compiler.
Given a plan for the sub-query, the partial compiler then generates
a plan for the entire query.

Our type-theoretic approach was originally inspired by Milner’s
tactics, which are used in theorem proving and proof assistants
(Section 7.1). We were then influenced by the categorical ideas
that inspired the precise typing of our partial compilers, as well, as
noted above, as the operations we use over them. It is fascinating
to note that, in their turn, the categorical ideas derive from Godel’s
1958 Dialectica interpretation of intuitionistic logic [1]. Since that
interpretation can be viewed as a form of intuitionistic logical con-
sequence that may not be ultimately surprising. Many prior prac-
tical systems have been organized by using cooperating compilers
(Section 7.2). Our formalism provides us with much-needed tools
to allow rigorous reasoning about such systems.

Our theory and practice evolved concurrently: the practice de-
fined and constrained the problems to be solved while the theory
enabled us to refactor our implementations to correspond to the
emerging formalism more directly and to generalize the scope of
our abstractions. This iterative process is not yet complete. This pa-
per is only a first step: much theoretical and practical work remains
to be done (Section 8).

2 Compilers and partial compilers

Some of our terminology is inherited from LINQ, which in turn
inherited terminology from databases. We call the programs fed as
inputs to a compiler “queries” and the outputs generated by the
compiler “plans” (as shown on the left of Figure 1). We strongly
emphasize, however, that our framework is not at all tied to query
languages. All computations involved act on data. We assume that
plans can be executed on specified input data.

Partial compilers are a generalization of compilers. The main
intuition is shown on the right of Figure 1. On receipt of a query,
a partial compiler needs the help of some other child compilers to
handle it. For example, the DryadLINQ cluster-level partial com-
piler (top) generates a plan to distribute the input data among many
machines and then instructs each machine to perform a computa-
tion on its local data. In order to generate a plan for each machine
the cluster-level compiler creates a machine-level sub-query, which
is handed to a machine-level compiler (bottom). The machine-level
compiler generates a machine-level plan. The global, cluster-level
plan contains code to (1) move data between machines and (2) to
invoke machine-level plans on the local data.

2.1 Definition

We now formalize all these intuitions with a typed lambda calculus.
We do not spell the calculus out in detail, but we make use of
product and function types, labeled sum types, and list types, as
well as base types. Operationally, we generally assume there are
no side effects, that types denote sets, and that functions are the
usual set-theoretic ones. If we discuss side-effects then we assume a
call-by-value monadic semantics along the lines of that of Moggi’s
computational lambda calculus [2, 23].
Compilers C' transform queries into plans so they are typed as:

C : query — plan

as pictured on the left of Figure 1.

All computations involved act on data, which we take to be
values of a given type “data”. In order to execute plans on specified
input data we assume available a suitable “run” operation:

run : plan x data — data

In order to avoid formalizing details of the runtime used for execut-
ing plans, we often model plans as computations:

plan = data — data

and then run is just function application: run(p, d) = p(d). We do
not specify the relationship between query and plan; in particular,
the plan type of some compiler may be the same or a subset of the
query type of some other compiler.

Our formalism models partial compilers as two separate pieces
that perform, respectively, query reduction and plan generation
(see Figure 1, right). We begin by considering unary partial com-
pilers, which need just one child compiler. Given an input query,
such a partial compiler returns a query: it “reduces” the original
query to a “simpler” (sub-)query, to be fed to its child. This is done
by a query reduction function

R:query — query’

Note that the sub-query may be written in a different language than
the original query. This extra generality is natural, since the sub-
query may be targeted to a different engine than the query.

The partial compiler also contains a plan generation function

G :query X plan’ — plan

that, given the original query together with a (sub-)plan for the sub-
query, generates a plan for the original query. Much as before, the
sub-plan may be of a different type than the original plan. A partial
compiler PC' is therefore typed as:

PC': (query — query’) x (query x plan’— plan)

To make formulas more readable we employ syntactic sugar for
both types and programs. We write

(query, plan) —o (query’, plan’)

for the above partial compiler type, reading the type as “going from
query to query’ and then back from plan’ to plan”; and we write

Compiler Q : query.
Reduction R(Q),
Generation P':plan’. G(Q, P')

for the partial compiler defined by (R, G). Note that) is bound
in both the reduction and generation clauses.

Figure 1 (right) shows a simple compiler tree, consisting of a
parent partial compiler invoking the services of a child compiler.
In our formalism this is modeled using a polymorphic composition
operation, which returns a compiler given a partial compiler and a
compiler. Let PC' = (R, G) be the (parent) partial compiler and

2011/11/6

let C' : query’ — plan’ be the (child) compiler. We use angle
brackets to denote their composition:

PC{CY) =daet AQ : query. G(Q, C(R(Q))) : query — plan
We also define the composition
PC ((PC/ Y : (query, plan) —o (query”, plan”’)
of the partial compiler PC' = (R, G) with a partial compiler
pC’ = (R',G’): (query’, plan) —o (query”, plan”)
to be:
Compiler @ : query.

Reduction R'(R(Q)),
Generation P" :plan”.G(Q,G'(R(Q), P"))

Partial compiler composition is associative:

PC(PC (PC")) = PC(PC")(PC"Y)

and the two kinds of composition are compatible, as shown by the
following action equation:

PC{PC (CY) = PC{PC H{(CY)

The partial compiler Id =4et (AQ.Q, AQ, P.P) passes a given
query to its child and then passes back the plan generated by its
child unchanged. It is the identity element for composition, by
which we mean that the following identity equations hold:

Id(PCY) = PC = PC(Id)
1d(C) = C

Unary partial compilers can be generalized to m-ary ones,
PC™ = (R",G™), where:

R" : query — (query) x ... x query’)
G" : query x (plan x ... x plan/,) — plan

They can be reduced to unary partial compilers if we take query’
to be query} X ... x query’, and plan’ to be plan} X ... X plan/,.
Compilers can be thought of as 0-ary partial compilers. The ability
to write n-ary partial compilers that can communicate with several
children, which may be addressing different execution engines, is
crucial to our approach.

To define composition on n-ary partial compilers we use a pair-
ing operations—called tensor—on compilers, and partial compil-
ers. Given two compilers C; : query, — plan, (for i = 1, 2) their
tensor

C1 ® Cs : (query, x query,) — (plan; X plan,)
is defined by:
C1 ® C2(Q1,Q2) = (C1(Q1), C2(Q2))

Then, given an n-ary partial compiler PC"™ as above and n com-
pilers C; : query, — plan, (for i = 1,n) the composition
PC™{(Ch,...,Ch)) is an abbreviation for the unary composition
PC™"{(Ch ® ... ® Cn)). The n-fold tensor is the iterated binary
one, associated to the left, and it is the trivial compiler for n = 0.

One proceeds analogously for the composition of an n-ary par-
tial compiler with n unary partial compilers, via an analogous ten-
sor of partial compilers. One then obtains suitable generalizations
of the above associativity, action, and unit equations.

We could have defined the general n-ary compositions directly,
but the pairing operations and unary composition relate well to the
categorical context: see Section 6.

2.2 An example: the sequential partial compiler

Here we consider compiling functional programs written as se-
quences of function compositions. This is not entirely contrived:

. . Partial .
Operation Symbol | Compilers Compilers Section
Composition O Yes Yes 2.1
Tensor ® Yes Yes 2.1
Star * Yes No 3.1
Conditional COND Yes Yes 3.2
Cases CASES Yes Yes 33
Functor PChunc No Yes 34

Table 1. Generic compiler operations described in this paper.

as we further discuss in Section 5, LINQ itself is a functional lan-
guage and LINQ programs rely heavily on function composition.

We consider queries @ that are obtained from the composition
of sub-queries prefix(Q) and suffix(Q), where:

prefix, suffix : query — query
The binary partial compiler
PC§EQ : (query, plan) — (query x query, plan X plan)

generates sub-queries for the query’s prefix and suffix. The plans
for these two queries are composed, with the suffix plan invoking
the prefix plan:

Compiler @ : query.
Reduction (prefix(Q), suffix(Q)),
Generation Pprefix, Psusfix : plan.
Ad : data. I‘LlIl(Psufﬁx7 run(Ppreﬁ)u d))

3 Compilers as first-class objects

While composition and tensor are the main operations on compilers
and partial compilers, we now discuss four more operations (shown
in Table 1). We can also define an iteration operation that repeatedly
invokes a child partial compiler, but we omit its definition due to
space constraints, as it is not used in any of our examples.

3.1 Star

So far we have considered partial compilers whose arity is constant.
We generalize, defining partial compilers that operate with lists
of queries and plans. Given a compiler C' : query — plan one
can define C* : query™ — plan™, the star of C, by applying C
pointwise to all elements in a list [of queries:

C*(1) = map(C, 1)
Consider the partial compiler
PCuq ¢ (query, plan) —o (query”, plan®)

that generalizes the sequential compiler PC%EQ from Section 2.2
by decomposing a query @ into a list [Q1, . . ., @x] of its compo-
nents. Given a compiler C' : query’ — plan for simple queries, the
composition PCspq ((C™)) is a compiler for queries that are an ar-
bitrary composition of sub-queries. A practical example involving
the star operation is given in Section 5.3.1.

3.2 Conditionals

The partial compiler operations we have constructed so far are
all independent of the queries involved; by allowing dependence
we obtain a richer class of compiler composition operations. For
example, it may be that one compiler is better suited to handle a
given query than another, according to some criterion:

pred : query — bool

2011/11/6

We can define a natural conditional operation to choose between
two compilers
COND : (query — bool) x (query — plan)2 — (query — plan)
by:
COND(p, (C1,C2)) = AQ. if p(Q) then C1(Q) else C2(Q)
We may use the mnemonic
IF pred THEN C, ELSE C»

for COND(pred, (C1, C2)). There is an evident analogous condi-
tional operation on partial compilers.

We can use the conditional to “patch” bugs in an existing
compiler without having access to its implementation. Assume
we have a predicate bug : query — bool that describes (a
superset of) the queries for which a specific complex optimiz-
ing compiler Copt generates an incorrect plan. Let us also
assume that we have a very simple (non-optimizing) compiler
CsivpLe that always generates correct plans. Then the compiler
IF bug THEN CSIMPLE ELSE COPT masks the bugs in COPT-

3.3 Cases

Similar to the * operation, but replacing list types by sum types,
we can define a “cases” operation, a useful generalization of con-
ditional composition. For convenience in our description we use
labeled sum types (see, e.g., [27]). Given n individual compilers
C; : query, — plan (for ¢ = 1,n) together with a function
W : query — l1:query, + ...+ l,:query,, one can define

CASES W OF 11 : Ci,...,ln : Cy
to be the compiler C' : query — plan where:

C(Q) = cases W(Q) of 11 : C1(Q), ..., ln : Cu(Q)

We give a practical example using CASES in Section 5.3.1.
There is an evident analogous cases operation on partial com-

pilers. Given

PC; = (R4, Gi) : (query,, plan) —o (query’, plan’)
one defines

CASES W OF 1, : PCy,...,l, : PC,
to be the partial compiler
PC = (R, G) : (query, plan) —o (query’, plan’)

where:

R(Q) = cases W(Q) of 11 : R1(Q), ...
G(Q,P') = cases W(Q) of l1 : G1(Q, P'), ...

3.4 Functor

Given functions f : query — query’ and g : plan’ — plan, there
is a partial compiler

PCrunc(f,9) : (query,plan) —o (query/, plan’)
defined as:
Compiler @ : query.
Reduction f(Q),
Generation P : plan. g(P)
This operation is functorial, meaning that this equation holds:

PCrunc(f, g)«PCFuDC(f/’g/)» = PCFuDC(f/Ofa gog/)

We describe two useful applications of the functor in which g is the
identity idp1an on plan.

Traditional compilers usually include a sequence of optimizing
passes. An optimizing pass is given by an optimizing transforma-
tion function Opt : query — query that completely transforms

the query (program) from a higher-level representation to a lower-
level representation. We can model an optimization pass as the par-
tial compiler PCry;,.(Opt, Idpian)-

Staged compilers are frequently built from a sequence of trans-
formations between (progressively lower-level) intermediate repre-
sentations:

Transy Trans, —1

query, query,,

‘We can model this structure composing partial compilers
PCpyne(Trans;, Idpian), obtaining the partial compiler

PCrync(Transy, Idpian) (- . - {PCrunc(Trans,—1, Idpian)) - - .)
of type (query, plan) —o (query,,, plan).

4 Correctness

The main practical benefit we expect to obtain from the use of par-
tial compilers in building systems is decreased design complex-
ity by reducing the number of possible interactions between the
components involved. The partial compilers communicate through
well-defined interfaces and maintain independent representations
of their sub-problems.

We bolster this argument by showing that the correctness of
compilers and partial compilers can be treated modularly. Correct-
ness is preserved by all our operations (Section 4.1). However, in
practice, correct compilers can be assembled from partial compil-
ers or compilers that are only correct for some queries. Importantly,
such restricted correctness can also be treated modularly, and we
define a natural Hoare-type logic to reason about correctness in this
case (Section 4.2). We regard the results presented here as a useful
complement to the existing rich body of work on compiler correct-
ness, since we prove our compilers correct under the assumptions
that the component parts are correct.

4.1 Compositional correctness

Given a plan P and a query () there is generally a natural correct-
ness relation, that the plan is correct for the query, written as:

PEQ

For example, P = @ may hold if the action of the plan on the
input data is in accord with the semantics of the query. We give
examples of such correctness relations for the ©LINQ language in
Section 5.3.1. We define what it means for a compiler, or a partial
compiler, to be correct, with respect to such correctness relations,
and ensure that our various ways of combining compilers and
partial compilers preserve correctness. We do all this informally,
although it is straightforward to spell out the relevant mathematics
in terms of the semantics of the lambda calculus without recursion
or other effects. We do not consider correctness in the presence of
effects. (This is not an unreasonable assumption since practical real
compilers are essentially pure functions.)

Suppose we are given a compiler C' : query — plan and a
correctness relation |= on plan and query. Then C'is correct w.r.t.
to = if, given a query @, it returns a plan P such that P = Q.
Suppose next that we are given a partial compiler

PC = (R, G) : (query, plan) —o (query’, plan’)

and correctness relations =C plan x query and ='C plan’ x
query’. Then PC is correct w.rt. = and |=' if, given a query Q
and aplan P', P’ = R(Q) implies G(Q, P') = Q'.

Given relations |=;C plan; X query,, for ¢ = 1,2, define a
relation =1 ® =2 between plan; x plan, and query; X query,
by: (P1, PQ) ':1 ® ':2 (Q1, QQ) lffpl ':1 Q,‘, fore = 1, 2. Then,
as an example, we would expect the sequential partial compiler
PC3pq (Section 2.2) to be correct w.r.t. = and = ® = for the

2011/11/6

suitable |=, as given correct plans for the prefix and suffix of a
query, their composition should be correct for the query. A formal
proof can be written in terms of the correctness notion at hand and
the semantics of queries.

Suppose PC = (R, G), as above, is a correct partial com-
piler, wrt. = and ', and C : query’ — plan’ is a cor-
rect compiler, w.r.t. =’. Then their composition PC{(C)) is cor-
rect w.r.t. |=. For given a query @, PC{(C)) generates the plan
G(Q,C(R(Q))). Since C is correct, w.r.t. ', we know that
C(R(Q)) E R(Q). So, since PC is correct, w.r.t. = and ',
we know that G(Q, C(R(Q))) E Q. But this is what we need to
show to prove that PC'((C)) is correct, w.r.t. |=.

We can make similar arguments about the other operations on
compilers and partial compilers defined in Sections 2 and 3 above.
For example, the tensor operations preserve correctness. That is, if
C; is correct w.r.t. |=;, for i = 1,2, then C; ® C4 is correct w.r.t.
=1 ® [E2; the corresponding assertion holds for partial compilers.
Combining all this with composition we see that n-ary composition
also preserves correctness.

Again, if C' : query — plan is correct w.r.t. |= then C*
is correct w.r.t. =", where [Py,...,Pn] E* [Q1,...,Qxn] iff
m = nand P; E Q;, for i = 1, m. The compiler in Section 3.1
provides an example. Leaving correctness relations implicit, the
generalized sequential partial compiler PCggq, is surely correct.
So if C correct, so is the compiler PCgrq (C*).

Conditional composition also preserves correctness. In fact, an
even stronger property is true: if C is correct w.r.t. = on queries
for which pred holds and if C5 is correct w.r.t. = on queries for
which pred does not hold, then IF pred THEN C1 ELSE C. is
correct w.r.t. =. An interesting use was given in Section 3.2.

4.2 A Hoare logic for compiler composition

We now sketch a form of “Hoare logic” that can be used to prove
compilers correct, even if their components are only correct for
some queries. We work informally, presenting suitable correctness
notions and some of their properties. It would be straightforward to
give a formal logic and a set-theoretic interpretation.

For every compiler C' : query — plan, correctness relation =
on plan and query, and predicate ¢(Q) on queries Q € query, we
define a “Hoare pair” by:

{p(@Q)}=C = VQ.¢(Q)=CQ)EQ

read as “the compiler C' correctly translates the queries where
predicate ¢ is true.” Next, for every partial compiler

PC = (R, G): (query, plan) — (query’, plan’)

correctness relations = (on plan and query) and =’ (on plan’ and
query’), and predicates (@) and ¢’ (Q'), on queries Q € query
and Q" € query’, respectively, we define a “Hoare triple” by:

{P(@}IPCL (@)} = VQ.9(Q) =
¢'R@Q)AN (VPP E R(Q) = G(Q,P) FQ)

As before, the predicate ¢(Q) specifies the queries on which PC
operates correctly; the predicate ¢’(Q’) gives a condition satisfied
by the sub-query produced by PC'. When the correctness relation
indices are clear from the context, we may omit them from the
Hoare assertions.

There are rules for unary composition of a partial compiler with
a compiler or with another partial compiler:

{p(@}rc{ (@)} {£(Q)}C
{p(@)}PC(C)

{p(@)}IPCiH{e' (Q)} {#(Q)}PCH"(Q")}
{p(Q)}PC{(PCH{¢"(Q")}

There is a rule for the tensor of two compilers:

{p1(Q1)}C1 {p2(Q2)}C2
{p1(fst(Q)) A @2(snd(Q))}C1 @ Co

There is a rule for the star of a compiler:

{e(@)}=C
{o (@) }-C"
where ™ ([Q1, . . . , Qx]) holds iff ¢(Q;) does, fori = 1, n.
There is a rule for the conditional composition of two compilers:

{pred(Q) =1 A p(Q)}C1 {pred(Q) =0 A p(Q)}C:
{©(Q)}IF pred THEN C, ELSE C-

There are similar rules, which we omit, for the tensor of two
partial compilers, for the conditional composition of two partial
compilers, and for the other operations discussed in Sections 2 and
3 above; there are also two evident predicate implication rules, one
for partial compilers and one for compilers.

As an example, the conditional composition rule would apply
to the bug-patching compiler of Section 4.1, taking pred = bug,
C1 = Cstmprg, C2 = Copr, and p(P) = T.

In the next section we construct a cluster compiler and use the
Hoare logic rules to reason about its correctness.

5 Application to query processing

In this section we return to the original problem motivating our
work: compiling LINQ. We introduce essential aspects of LINQ
and give a much simplified version, called pLINQ, that is small
enough to be tractable in a paper but rich enough to express inter-
esting computations. We develop a hierarchy of partial compilers
that, composed together, provide increasingly more powerful com-
pilers for ©LINQ.

51 LINQ

LINQ (Language-INtegrated Queries) was introduced in 2008 as a
set of extensions to traditional .Net languages such as C# and F#.
It is essentially a functional, strongly-typed language, inspired by
the database language SQL (or the relational algebra) and compre-
hension calculi [4]. Like LISP, the main datatype manipulated by
LINQ computations is that of lists of values; these are thought of
as (data) collections.

LINQ operators transform collections into other collections.
Queries are (syntactic) compositions of LINQ operators. For ex-
ample, the query C.Select(e => f(e)) uses the Select opera-
tor (often called map) to apply the function f to every element of
a collection C. The result is a collection of the same size as the in-
put collection. The notation e => £ (e) is syntactically equivalent
to the lambda expression Ae.f (e). The elements e of C can have
any .Net type, and the function f can be any .Net computation that
returns a value, e.g., an expression, method, or a delegate.

The core LINQ operators are named after SQL. They are:
Select (a.k.a. map), Where (a.k.a. filter), SelectMany, OrderBy,
Aggregate (a.k.a. fold), GroupBy (the output of which is a collec-
tion of collections), and Join. All these operators are second-order,
as their arguments are functions.

52 uLINQ

The LINQ language is quite complex, featuring more than 150
different operators if one counts the overloaded versions. We now
define a reduced version of LINQ with only three operators, called
LLINQ; this serves to model all the features of LINQ needed to
illustrate the uses of partial compilers.

2011/11/6

5.2.1 pLINQ syntax

The basic data types are denoted by the symbols S, T, U, and K; they
are given by the grammar: T ::= B | T* where B ranges over a given
set of primitive types, such as Int, the type of integers. The type T*
stands for the type of collections (taken to be finite lists) of elements
of type T. The corresponding .NET type is IEnumerable(T).

BLINQ queries consist of sequences of operator applications;
they are not complete programs as the syntax does not specify the
input data collections. They are specified by the grammar

Query := OpAp,;...;0pAp, (n>0)

OpAp = SelectMany<S,T>(FExp) |
Aggregate<T>(FExp,Exp) |
GroupBy<T,K>(FExp)

Here Exp ranges over a given set of expressions, each of a given
type T, and FExp ranges over a given set of function expressions,
each of a given type S1 X...xS, — T. We leave unspecified details
of the given primitive types, expressions, and function expressions.

Only well-formed operator applications and queries are of in-
terest. The following rules specify these and their associated types:

OpAp, : Ti — Tit1 (i=1,n)
OpAp,;...;0pAp,, : T1 = Tnt1

SelectMany<S,T>(FExp) :S*—T"

Aggregate<T>(FExp,Exp) : T*—T"
(if FExp has type T X T — T, and Exp has type T)

GroupBy<T,K>(FExp) : T*—T** (if FExp has type T — K)

(if FExp has type S—T")

5.2.2 pLINQ semantics

We now give an informal explanation of the semantics of ©LINQ.
We use - for list concatenation. A query of type S* — T* denotes a

function from S collections to T collections. SelectMany<S, T>(FExp)

applied to a collection returns the result of applying FExp to
all its elements and concatenating the results. So, for exam-
ple, SelectMany<nat,nat>(n => [n,n+1]) applied to I =get
[1,2,3,4,5] results in [1,2,2,3,3,4,4,5,5,6].

Aggregate<T>(FExp,Exp) denotes a singleton list containing
the result of a fold operation [14] performed using FExp and Exp.
So, for example, Aggregate<nat,nat>((m,n) => m+n,6) ap-
plied to I resultsin [1 4+ (24 (3+ (4 + (5+6))))] = [21]. Some
compilers require that FExp forms a monoid with Exp as a unit el-
ement (i.e., an associative function with a unit).

GroupBy<T,K>(FExp) groups all the elements of a collection
into a collection of sub-collections, each sub-collection consisting
of all the elements in the original collection sharing a common
key, as found using FExp. The sub-collections occur in the order of
the occurrences of their keys, via FExp, in the original collection,
and the elements in the sub-collections occur in their order in the
original collection. So, for example, GroupBy(n => n mod 2)
applied to [results in [[1,3,5],[2,4]].

Finally, composite queries are constructed with semicolons and
represent the composition, from left to right, of the functions de-
noted by their constituent operator applications.

The formal definition of pLLINQ can be completed by giving
a complete denotational semantics. We show the semantics for a
language fragment; it is easy (but slightly tedious) to spell it out
for a full language. We assign a set [T] to every pLINQ type T,
assuming every primitive type already has an assigned such set.
Next, to any well-typed operator application OpApp : S — T
we assign a function [OpApp] : [S] — [T], given a denotation
[Exp] € [T] for each expression Exp : T. For example:

[Aggregate<T> (FExp,Exp)](d)= [fold([FExp], [Exp], d)]

Finally, to any well-typed query Query :
function [Query] : [S] — [T] by:

[OpAp,; . .. ;OpAp, | = [OpAp,] - ..o [OpAp,]
5.2.3 upLINQ, LINQ, and MapReduce
The LINQ operators Select and Where can be defined using
SelectMany. For example, Select<S,T>(x => f(x)) is the
same as SelectMany<S,T>(x => [£(x)]).

The popular MapReduce [8] programming model can be suc-
cinctly expressed in uLINQ:

S — T we assign a

(n>0)

MapReduce (map, key, red)
is the same as

SelectMany (map) ; GroupBy (key) ; Select (red)
5.3 Compiling £LINQ

5.3.1 A single-core compiler

We start by defining the types for queries and plans. Let us assume
we are given a type FExp corresponding to the set of function ex-
pressions. Then we can define types OpAp and MQuery, corre-
sponding to the sets of pLINQ operator applications and queries:

OpAp = SelectMany : FExp +
Aggregate : FExp +
GroupBy : FExp
MQuery = OpAp”
For pLINQ plans we take

MPlan = MData — MData

for a suitable given type “MData” of uLLINQ data. We assume

MData denotes lists of items, where items are either elements of

(the semantics of) a basic uLINQ type B, or lists of such items.
There are natural functions:

cr : [T] — [MData]

where we refer to the semantics of the lambda calculus on the right.
Using this, one can define a natural correctness relation P |= @ be-
tween plans (elements of [MPlan]) and queries («LINQ queries,
but identified with elements of [MQuery]). The correctness re-
lation for uLINQ queries is given by the following commutative
diagram, where Q is a uLINQ query of type S — T:

[a]

[S] [t]

Cs Cr
[MData] - [MData]

and there is an analogous correctness relation for uLLINQ operator
applications.

One often computes on collections that are bags, i.e., (un-
ordered) multisets (e.g., in the MapReduce model). In the un-
derlying implementation lists may be used to represent bags. In
this case a different “bag correctness” relation should be used
that requires that [Q]ecr and cseP give the same results up to per-
mutation. Such correctness is only expected if all aggregations
Aggregate (FExp,Exp) are commutatively monoidal (such an ag-
gregation is monoidal if FExp is associative with unit Exp; com-
mutativity further requires FExp to be commutative). Under that
assumption [Q] preserves permutation equivalence; as ¢s and cr
evidently also preserve permutation equivalence, we see that bag
correct Ps preserve permutation equivalence on the range of cs.

2011/11/6

As a basic building block for constructing pLINQ compilers,
we start from three very simple compilers, each of which can only
generate a plan for a query consisting of just one of the operators:

CselectMany : FExp — MPlan Caggregate : FExp — MPlan

CGroupBy : FExp — MPlan
The denotational semantics of the uLINQ operators from Sec-
tion 5.2.2 is a blueprint for a possible implementation of these com-
pilers.
We use the CASES operation from Section 3.3 to combine
these three elementary compilers into a compiler that can handle
simple one-operator queries:

CASES (A\Q : OpAp.Q) OF
SelectMany : CselectMany

Aggregate : Caggregate,
GroupBy : CaroupBy

Coo =

Finally, we use the generalized sequential partial compiler
PCSEQ and the star operation, both introduced in Section 3.1, to
construct a compiler C' LLINQ MQuery — MPlan for arbitrary
pLINQ queries, by:

CuLINQ = PCseq{(Coo))

If the above three simple compilers are correct, then, by the discus-
sion in Section 4.1, C' LLINQ is also correct.

5.3.2 A multi-core compiler

In this example we construct a special partial compiler PCy;¢ to
allow our single-core compiler to target a multi-core machine. We
assume that each core can execute a plan independently. The most
obvious way to take advantage of the available parallelism is to
decompose the work to perform by splitting the input data into
disjoint parts, performing the work in parallel on each part using
a separate core, and then merging the results.

A partial compiler for operator applications for a multi-core
machine with two identical cores c; and c2

PCyc : (OpAp, MPlan) — (OpAp, MPlan)
can be defined as:
Compiler @ : OpAp.
Reduction @,
Generation Generation P : MPlan.

Ad : MData. let d' be part,(Q,d) in
collate(Q, rune, (P, d’), run,, (P,d\d"))

The construct
rune (P, d)

is to be thought of as a remote procedure call that runs P on
computational engine e : Engine, computing on the data d. From
the point of view of the lambda calculus we regard run.(P,d)
as equivalent to P(d), the type Engine as the unit type, and the
semantics of remote procedure calls as an implementation matter
that we do not formalize here.

For any list d, part, (d) and d\part, (d) constitute a division of
d into two parts, in a query-dependent manner (we assume that d\d’
is chosen so that d = d’ - (d\d'), if that is possible). The function
collate assembles the results of the computations together, also in
a query-dependent manner. There are many possible ways to define
part; and collate; one reasonable specification is shown in Table 2
and described below. In the table prefix(d) gives a prefix of d (so
that d = prefix(d) - (d\prefix(d))); head(d) is the first element
of d, assuming d is non-empty, and [Exp] otherwise; and setr(d)
consists of d with all repetitions of an element on its right deleted.

The SelectMany operator is homomorphic with respect to col-
lection concatenation, so it can be computed by partitioning the

input collection d into an arbitrary prefix and suffix, applying the
same operator recursively, and concatenating the results.

Similarly, if monoidal, Aggregate (FExp,Exp) is homomor-
phic w.r.t. the aggregation function FExp, so it can be applied to an
arbitrary partition of d, combining the two results using FExp.

Finally, GroupBy partitions the input collection d so that values
with the same key end up in the same partition. (It does so by
splitting the codomain of the key function FExp into two arbitrary
disjoint sets.) The results of recursively applying GroupBy on these
partitions can be concatenated as the groups will also be disjoint.

The partial compiler PCy; is correct when restricted to the
predicate Mon(Q) that asserts that if @ is an aggregation then it is
monoidal. The correctness assertion for PCy¢ is therefore:

{Mon(Q)} PCric{Mon(Q)}

The proof of this formula is based on the semantics of ©LINQ’s
three operators.
The complete multi-core pLINQ compiler is given by

PCspq{(PCuc{(Coo)")

This could be generalized to a machine with n cores by suitably
modifying part, and collate.

Regarding correctness, since Coo is correct, by the weakening,
composition, and star rules we have: {Mon* (Q*)} PCyic{(Coo)™.
We also have {Mon™(Q")} PCspq{Mon™(Q™)} as PCgrq is
correct and its query reduction function is the identity. It follows
by the composition rule that the multi-core compiler is correct
when restricted to Mon™(Q™); note that this predicate holds of a
query if and only if it contains only monoidal aggregations.

Note that we have achieved a non-trivial result: we have built
a real uLINQ compiler targeting multi-cores by writing just a few
lines of code, combining several simple compilers. This implemen-
tation is certainly not optimal as it repartitions the data around each
operation, but we can transform it into a smarter compiler by using
the same techniques (as we have done in our actual implementa-
tion). The functionality it provides is essentially that of PLINQ [9],
the parallel LINQ implementation.

5.3.3 Compilation for distributed execution

The same strategy employed by the multi-core compiler for paral-
lelizing uLLINQ query evaluations across cores can be used to paral-
lelize further, across multiple machines, in a manner similar to the
DryadLINQ compiler. We add one additional twist by modeling
resource allocation and scheduling in the plan language. Consider
an example of a cluster of machines, and suppose we are dealing
with a large collection, stored on a distributed filesystem, by split-
ting the collection into many partitions resident on different cluster
machines (each machine may have multiple partitions). The goal
of the generated plan is to process the partitioned collections in an
efficient way, ideally having each piece of data be processed by
the machine where it is stored. We assume in this example that the
cluster is composed of just two machines, m1 and mo.

We define the unary partial operator application compiler
PCcruster to be:

Compiler @ : OpAp.
Reduction Q,
Generation P : MPlan.
Ad : MData. machines m1, ma.
let d' be MParty(d, m1,m2) in
collate(runm,, (P, d"), run.,, (P,d\d"))

“machines m1, ma. P” is an implementation-level scheduling
construct to obtain two different machines and then run the plan P,
which will involve the two machines. The construct

MPartq (d, m1,m2)

2011/11/6

[@Q [collate(Q, 1, 1) [part,(Q,d)]
SelectMany (FExp) l-r prefix(d)
Aggregate (FExp,Exp) | [[FExp](head(l), head(r))] | prefix(d)
GroupBy (FExp) l-r [z € d | [FExp](x) € prefix(setr(map([FExp], d)))]

Table 2. Compiling a query @ for a dual-core computer.

returns the first part of a partition of the data d into two (dependent
on my and mg2). We assume that, in the implementation, each data
item is tagged with the machine it resides on; the data-division
construct could then, for example, put a data item into the first part
of the partition if m is closer to its machine than ms. In terms of
the underlying lambda calculus, we regard MPart, (d, m1, m2) as
equivalent to MPartq (d), which nondeterministically returns the
set of the first parts of all possible partitions of d into two'.

The cluster-level operator application compiler can then be ob-
tained by, for example, composing the cluster partial compiler with
the multi-core compiler described previously

PCCLUSTER<<PCMC<<COO>> >>

and then the complete compiler is:

PCSEQ«PCCLUSTER«PCMC<<COO>> >>*>>

The cluster-level compiler is structurally similar to the multi-core
compiler. However, in that case the collections themselves are al-
ready partitioned and the compiler uses the collection structure
to allocate the computation’s runtime resources. To establish cor-
rectness, we should consider the bag correctness relation, defined
above, and also restrict the input language to queries such that all
the binary functions occurring in Aggregate operations are asso-
ciative and commutative, with unit the corresponding constant?.

This compiler is in some respects more powerful than MapRe-
duce, because (1) it can handle more complex queries, including
chains of MapReduce computations and (2) it parallelizes the com-
putation both across cores and across machines”.

5.4 Implementation

‘We have implemented two useful real compiler forests: one for han-
dling LINQ, and one for handling matrix computations. There is no
obvious metric for comparing two implementations of a compiler,
one monolithic and one modular (especially since they do not con-
tain the same optimizations), so we do not provide any measure-
ments. We have reused multiple partial compilers. The correctness
proof presented above for uLLINQ can be extended to reason infor-
mally about a larger subset of LINQ and its implementation.

54.1 Compiling LINQ

‘We have implemented a large number of compilers and partial com-
pilers as building blocks for compiling the LINQ language, in-
cluding partial compilers for multi-core execution (PCy;c), GPU
execution (by wrapping the Microsoft Research Accelerator com-
piler [31]), sequential composition (PCggq), cluster-level execu-
tion (PCcy,ysrrr) (using Dryad as a runtime for the cluster), and
complex compositions of all of these. Some of the compilers are

I'We are then no longer working with the straightforward set-theoretic
semantics and must use the finite subsets monad (see Section 6).

2 A complete formal treatment would also require us to adapt the definitions
of correctness from Section 4 to handle non-determinism. The above rules
for the Hoare logic remain valid.

3 With just a little more work one can also add the only important missing

optimization performed by MapReduce, which is to perform early aggrega-
tion in the map stage.

complete and can handle essentially all of LINQ while others fail
to compile some queries by generating a plan wrapping an error.
For example, the GPU compiler cannot handle operations on .Net
collections with complex datatypes. In our prototype the leaves of
the compiler forest are frequently the LINQ-to-Objects implemen-
tation that is part of the default .Net distribution. Our implemen-
tation is only preliminary, but it performs well and has served to
validate the architectural design. We are actively working to ap-
ply these ideas on a larger scale by building an industrial-strength
compiler hierarchy that peforms more sophisticated optimizations
at multiple levels (cluster/machine/core/GPU).

5.4.2 Compiling Matrix Algebra

We have also defined a functional language for computing on ma-
trices. The language contains operators such as addition, multipli-
cation, transposition, solving linear systems, Cholesky factoriza-
tion, and LU decomposition. The matrices are modelled as two-
dimensional collections of tiles, where the tiles are smaller matri-
ces. This design is useful for dense matrices, but by making tiles
very small it can also accommodate sparse matrices. Our compiler
handles very large matrices, which can be partitioned across mul-
tiple machines. The top-level partial compiler translates matrix op-
erations into operations on collections of tiles. The collection oper-
ations are translated by a second-level partial compiler into LINQ
computations and passed to our LINQ compilers. The leaf compil-
ers handle tile operations. The result is a compiler that can paral-
lelize large matrix computations and generate linear algebra code
for execution on a large cluster, also using multiple-cores. The ma-
trix compiler takes advantage of the modularity of our LINQ com-
piler forest, by reusing multiple pieces as black-boxes, while also
defining a set of new matrix-related partial compilers and compil-
ers. The matrix compiler can be roughly described as:

PCspq{PCwuatrix {(Crile, CLING) ™)
where Cring is the distributed LINQ compiler from Section 5.4.1.

6 Categorical remarks

Remarkably, the idea of partial compilers originates in the categor-
ical literature under the rubric of Dialectica categories [6, 15]. As
the name suggests, these were invented to give a categorical ac-
count of Godel’s Dialectica interpretation of intuitionistic logic in
type theory [1]. For simplicity, we explain the idea in terms of sets
and functions, although it can be put in much more general terms.
The Dialectica category has as objects pairs of sets (P, S), where,
following Blass [3], we may think of P as a set of problems and
S as a set of solutions. A morphism, (f, g) : (P,S) — (P',5’)
consists of a reduction function f : P — P’ and a solution func-
tion g : P x S’ — S; we may picture it as in Figure 2. It is
exactly a partial compiler h : (P, S) —o (P, S"), if we overlook
the difference between the syntax for partial compilers, i.e., lambda
expressions, and their semantics, i.e., functions.

The composition (f, g) = (f2,92)° (f1,g1) of two morphisms
(P1, 51) RELITION (P2, S2) 2.92), (Ps, S3) is given by:

f(p1) = f2(fi(p1)) and g(p1)(s3) = g1(p1,92(fi(p1), s3))

2011/11/6

Figure 2. A morphism from (P, S) to (P’,S").

This corresponds to the composition of the corresponding par-
tial compilers. If h; is (fi,g;) (for @ = 1,2) then hq{(h2)) is
(f2, g2) ° (f1, g1): note the reversal of order. The identity morphism
on (P, S) is (ids, m2), which is just the identity partial compiler.
So we have a categorical explanation of unary partial compilers
and their composition. Turning to binary partial compilers, the
category has a tensor product. This is given on objects by:

(P1,51) ® (P2, S2) = (P1 X P2, 51 x S2)

(flagl)®(f2792) : (P1 X P27‘5'1 X 52) — (Pll X Péasi X Sé)

the tensor product of two morphisms (f;, g;) : (P, Si) — (P, S;i)
(i =1,2)is (f,g), where f(p1,p2) = (f1(p1), f2(p2)) and where
9(p1,p2)(51,52) = (91(p1, 51), g2(p2, 52)). This corresponds to
the tensor of the corresponding partial compilers: if h; is (fi, gi)
then h1 ® hz is (f1,91) ® (f2, g2)-

All the operations can be seen as arising from categorical con-
siderations; we briefly discuss some of them. The cases operation
arises in a standard way from the fact that categorical sums ex-
ist when the sets of solutions are all the same [6], in particular
(P1,S) + (P2,S5) = (P + P, S) (however they do not exist
in general). Finally the functorial operation corresponds to the ev-
ident functor from the the Girard category to the above Dialectica
category. (The Girard category is a simpler version of the Dialectica
category: see [7, Prop. 52] for the relationship between them.)

Dialectica categories also provide an account of correctness.
One changes the category a little, using as objects triples (P, S, =)
with a “solution” relation = C S x P. A morphism is then a
pair (f,g) : (P, S,E) — (P, S’,) that is a morphism from
(P, S) to (P',S’) as before, such that, additionally, for any p € P
ands’ € §',if s' =’ f(p) then g(p)(s’) = p. (This is the converse
of de Paiva [6], and instead follows Blass [3].)

The tensor product (Py, S1, =1) ® (P2, S2, [E2) of two objects
is (P1 x P2,S51 x Sa, =) where (s1,s2) = (p1,p2) if and only
if s1 =1 p1 and sz =2 pa; the composition and tensor product of
morphisms are defined as before, verifying, as one goes along, that
the extra conditions involving the relations are satisfied. In terms
of partial compilers, correct partial compilers now correspond to
morphisms in the Dialectica category with relations, and the fact
that composition preserves correctness corresponds to the fact that
the composition and tensor product of morphisms are defined in the
same way, with and without relations.

The connection with categorical ideas is not only pleasant but
also useful: as we have seen our operations on partial compilers
were inspired by the corresponding categorical constructs. The lit-
erature on the Dialectica categories contains further functorial con-
structions that may also prove useful—for example, the sequential
construction of Blass [3] is intriguing. Finally we note that the inter-
nal language of Dialectica categories may help formulate a useful
language for the expression of partial compilers.

It is interesting to consider adding effects to the Dialectica
categories. After Moggi’s work [2, 23], one would naturally do so
via a suitable monad, 7', say. Martin Hyland suggested* using the
underlying Kleisli category, taking morphisms (f,g) : (P,S) —

4 Personal communication

(P',8"Ytobepairs f: P — T(P'),g: P xS — T(S), with the
evident composition and identities (we consider the variant with no
correctness relation). One still has sums as above when the second
component of the objects are all the same. One can also still define
a tensor operation, but one obtains a premonoidal structure [29]
rather than a functor; this corresponds to the fact that side-effects
may cause the order in which child compilers are called to matter.

7 Related work
7.1 Tactics and problem reductions

As we have said, partial compilers arose by analogy with Milner’s
tactics [12, 22]. Milner cared about sequents and theorems, whereas
we care about queries and plans; our partial compilers can be n-ary,
his tactics produce lists. So rather than partial compilers:

(query, plan) —o (query’, plan’)
equivalently
(query — query’) x (query x plan’ — plan)
he has tactics of the form:
sequent — (sequent™ x (theorem™ — theorem))
Without side-effects, these correspond to partial compilers of type:
(sequent, theorem) —o (sequent™, theorem™)

Our methods of combining partial compilers correspond, more or
less, to his tacticals. For example, we both use a composition
operation, though his is adapted to lists, and the composition of two
tactics may fail. His makes use of an OR tactical, which tries a tactic
and if that fails (by raising a failure exception) tries an alternate; we
replaced that by our conditional partial compiler.

We have avoided exceptions by making careful use of lambda
calculus types. This enables us to use a side-effect free lambda
calculus; it also strengthens the connection with category theory,
discussed in Section 6. Correctness is also considered by Milner
and Bird [22], where it is called “validity” instead.

7.2 Practical related work

Similar problems arise in federated and heterogeneous distributed
databases. In the former, a query must be converted into queries
against the component databases [30], and most of the work con-
centrates on optimizations in such a setting. Wrappers are used
to translate queries between different component databases [18].
Our partial compilers serve a similar role but are more general as
they can have multiple children while wrappers operate on a single
database. A system such as Dremel [21] that uses trees to execute
queries would benefit from our approach.

Others have considered compilers (or translators) at an abstract
level, for example the work of Earley and Sturgis [10]. However,
their emphasis is different: they vary three languages, source, tar-
get, and “meta” (the one in which the compiler is written), whereas
we fix the metalanguage but bring in partiality.

The Haskell community has investigated separating an algo-
rithm from its parallel behavior by introducing compositional
strategies that control the parallel evaluation of functions [32].
However, these strategies are only used to specify parallelism and
are composed mainly to operate on complicated data types or to
control fine-grained parallelism rather than to combine different
functionalities (e.g., combining compilers for CPUs and GPUs).
To use an existing strategy on a newly-defined datatype, one must
write a new strategy. Strategies can also be used to express parallel
paradigms such as producer/consumer and pipeline; an implemen-
tation of our compiler forests could support these as well.

Lerner et. al [19] compose analyses by integrating them with
their associated transformation to use graph transformations to

2011/11/6

allow multiple analyses to communicate. Chang et al. [S] propose
cooperating decompilers, where individual abstract interpretations
communicate to share information. Our approach also supports
these applications using the iteration operation mentioned above.

8 Discussion and conclusions

We made several simplifying assumptions in order to concentrate
on the main points: partial compilers and their compositions. For
example, in uLINQ we did not add a join operator, and the nature of
expressions was left unspecified; in particular we did not consider
(function) expressions containing nested queries. The join operator
would have led to the use of tree-shaped queries rather than lists,
and nested queries would have led to the use of DAGs: indeed
DryadLINQ plans are DAGs. We note that a natural treatment
of DAGs for functional programming seems to be missing from
the literature. There is a natural version of the star operator of
Section 3.1 for trees, and there should also be one for DAGs.

We also identified the runtime (plan) language (or languages)
with the compiler language, thereby avoiding the need to employ
two-level languages [11, 24, 26]. In reality, different computational
engines can support different languages. It would be interesting to
pursue formal treatments of the resource manager, which allocates
engines, and the remote procedure calls, used by plans to invoke
computations on different engines. Existing work on distributed
computation in a functional setting (e.g., [17, 25]) may be helpful.
A potential downside of modularity is that it may prevent partial
compilers from sharing results of their analyses; this problem can
be solved by using partial compilers whose query language is the
same as the intermediate language of their parents.

We have generally assumed that the semantics of the compiler
lambda calculus could be taken to be simply that of sets and func-
tions. However, for realism, one should at least allow recursion, and
so nontermination, and also, perhaps, other effects such as non-
determinism, given the discussion in Section 5.3.3. The plan lan-
guages may perhaps also profitably employ effects: probabilistic
choice comes to mind as one natural possibility. The presence of
effects raises the question of how to handle correctness in the pres-
ence of effects or how to adapt the Hoare logic (see, e.g., [13, 28]).

The DryadLINQ compiler extends the LINQ language with op-
erations to partition data, similar to our partitioning operations.
However, these extensions are invisible to the machine-level com-
pilers. This suggests that partial compilers can be used to extend a
legacy language implementation while treating it as a black box.

Nothing in our formalism is deeply dependent on plans being
executable programs. Our software architecture may therefore be
much more broadly applicable to other settings involving divide-
and-conquer strategies.

We have had great success building useful practical compilers
from partial compilers. Let us note that adopting a partial compiler
architecture does not preclude one from building monolithic com-
pilers; it merely offers an additional tool for enforcing modularity
in the implementation. Our evidence so far is that the modularity
has very useful outcomes, such as easing the reasoning about cor-
rectness and promoting module reuse.

References

[1] J. Avigad and S. Feferman. Gddel’s Functional (”Dialectica”) Inter-
pretation, chapter 6, The Handbook of Proof Theory, pages 337-405.
North Holland, 1998.

[2] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In APPSEM,
pages 42-122, 2000.

[3] A. Blass. Questions and answers — a category arising in linear logic,
complexity theory, and set theory. In Advances in Linear Logic,
London Math. Soc. Lecture Notes 222, pages 61-81, 1995.

[4] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Compre-
hension syntax. SIGMOD Record, 23(1):87-96, 1994.
[5] B.-Y. Evan Chang, M. Harren, and G. C. Necula. Analysis of low-level
code using cooperating decompilers. In SAS, pages 318-335, 2006.
[6] V. de Paiva. The Dialectica categories. In Proc. Cat. in Comp. Sci. and
Logic, 1987. Cont. Math. , vol 92, pages 47-62. AMS, 1989.
[71 V. de Paiva. The Dialectica Categories. PhD thesis, University of
Cambridge, 1991.
[8] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In Proc. OSDI, 2004.
[9]1 J. Duffy. Concurrent Programming on Windows. Addison Wesley,
2008.
[10] J. Earley and H. Sturgis. A formalism for translator interactions.
Commun. ACM, 13:607-617, 1970.
[11] M. J. Gabbay and D. P. Mulligan. Two-level lambda-calculus. Electr.
Notes Theor. Comput. Sci., 246:107-129, 2009.
[12] M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF.
Springer-Verlag, 1979.
[13] J. Goubault-Larrecq, S. Lasota, and D. Nowak. Logical relations for
monadic types. MSCS, 18(6):1169-1217, 2008.
[14] G. Hutton. A tutorial on the universality and expressiveness of fold. J.
Funct. Program., 9(4):355-372, 1999.
[15] J. M. E. Hyland. Proof theory in the abstract. Ann. Pure Appl. Logic,
114(1-3):43-78, 2002.
[16] M. Isard et al. Dryad: distributed data-parallel programs from sequen-
tial building blocks. In EuroSys, pages 59-72, 2007.
[17] L. Jia and D. Walker. Modal proofs as distributed programs (extended
abstract). In ESOP, pages 219-233, 2004.
[18] D. Kossmann. The state of the art in distributed query processing.
ACM Comput. Surv., 32:422-469, 2000.
[19] S. Lerner et al. Composing dataflow analyses and transformations. In
Proc. 29th. POPL, pages 270-282. ACM, 2002.
[20] E. Meijer et al. LINQ: reconciling object, relations and XML in the
NET framework. In Proc. SIGMOD ’06, pages 706-706. ACM, 2006.
[21] S. Melnik et al. Dremel: interactive analysis of web-scale datasets.
Proc. VLDB Endow., 3:330-339, 2010.
[22] R. Milner and R.S. Bird. The use of machines to assist in rigorous
proof. Phil. Trans. R. Soc. Lond. A, 312(1522):411-422, 1984.
[23] E. Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55-92, 1991.
[24] E. Moggi and S. Fagorzi. A monadic multi-stage metalanguage. In
FoSSaCs, pages 358-374, 2003.
[25] T. Murphy VII. Modal types for mobile code. PhD thesis, CMU, 2008.
[26] F. Nielson and H. Riis Nielson. Two-level functional languages.
Cambridge University Press, 1992.
[27] B. C. Pierce. Types and programming languages. MIT Press, 2002.
[28] G. D. Plotkin and M. Pretnar. A logic for algebraic effects. In LICS,
pages 118-129. IEEE Computer Society, 2008.
[29] J. Power and E. Robinson. Premonoidal categories and notions of
computation. MSCS, 7(5):453-468, 1997.

[30] A.P.ShethandJ. A. Larson. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Comput.
Surv., 22:183-236, 1990.

[31] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data parallelism
to program gpus for general-purpose uses. In Proc. ASPLOS-XII,
pages 325-335. ACM, 2006.

[32] P. W. Trinder et al. Algorithm + Strategy = Parallelism. Journal of
Functional Programming, 8(1):23-60, 1998.

[33] Y. Yu et al. DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language. In OSDI, pages
1-14, 2008.

2011/11/6

	Introduction
	Compilers and partial compilers
	Definition
	An example: the sequential partial compiler

	Compilers as first-class objects
	Star
	Conditionals
	Cases
	Functor

	Correctness
	Compositional correctness
	A Hoare logic for compiler composition

	Application to query processing
	LINQ
	LINQ
	LINQ syntax
	LINQ semantics
	LINQ, LINQ, and MapReduce

	Compiling LINQ
	A single-core compiler
	A multi-core compiler
	Compilation for distributed execution

	Implementation
	Compiling LINQ
	Compiling Matrix Algebra

	Categorical remarks
	Related work
	Tactics and problem reductions
	Practical related work

	Discussion and conclusions

